投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

Improving Representation of Tropical Cloud (2)

来源:热带地理 【在线投稿】 栏目:期刊导读 时间:2020-12-24
作者:网站采编
关键词:
摘要:The CRM data and the method used to derive Lcf are described in Section 2. Section 3 presents the analysis of Lcf versus atmospheric convection and evaluates the established representation of Lcf. The

The CRM data and the method used to derive Lcf are described in Section 2. Section 3 presents the analysis of Lcf versus atmospheric convection and evaluates the established representation of Lcf. The discussion and conclusions are presented in Section 4.

2. Data and methods

2.1 CRM data

The global CRM data are from a simulation of the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)developed at Japan Agency for Marine-Earth Science and Technology and the University of Tokyo (Tomita and Satoh, 2004; Satoh et al., 2008, 2014). The cloud microphysics scheme of Grabowski (1998) is adopted and no convective scheme is used. This scheme is simpler than other cloud microphysics schemes, but convective circulation is explicitly calculated so that the associations between convection and large-scale atmospheric states are consistently represented. The boundary layer scheme with moist processes is implemented (Nakanishi and Niino, 2006). The vertical resolution of the model is 40 levels with Lorenz grids (Satoh et al., 2008, 2014)stretching from the surface up to about 40 km. The vertical interval of the half-level (ΔZ) increases with height from about 170 m at the bottom to about 3 km near the top (ΔZ < 1 km below 10 km).

NICAM can be run using different horizontal resolutions depending on the grid division level used. In this study, data from a simulation using a grid division level of 11 (corresponding to a grid size of about 3.5 km)(Miura et al., 2007) are adopted; the cloud characteristics of this dataset have been extensively analyzed by Inoue et al. (2008, 2010), Masunaga et al. (2008), Sato et al. (2009), and Satoh et al. (2010). The simulation was started from 0000 UTC 25 December 2006 and integrated for 7 days. The results were stored as instantaneous snapshots at 0000 UTC on each day. Figures 1 and 2 show the simulated total cloud fraction and the zonal mean vertical cloud fraction profile, respectively, compared with those from the 2B-GEOPROF product of CloudSat observations (Marchand et al., 2008) during the same period. The NICAM simulation captures both the geographical distribution of cloud systems in the deep convective regions (Fig. 1) and the vertical cloud profiles in the tropics (Fig. 2). The cloud top height of NICAM in Fig. 2 is slightly higher than the CloudSat observations,which is because CloudSat does not detect optically thin clouds in the topmost layers (Stephens et al., 2008).

The variables used in this study are the mass mixing ratios of liquid and ice water condensates (qc and qi, respectively), in-cloud precipitation (qr) and snow (qs), and vertical velocity (w).

2.2 Derivation of Lcf

To obtain Lcf at the resolution of the GCM and to establish the GCM-oriented relationship between Lcf and atmospheric convection, the original NICAM output is averaged based on a 2.8° × 2.8° (latitude × longitude)grid division, which is close to a T42 GCM grid mean fields are then used to obtain Lcf using a stochastic cloud generator (R?is?nen et al., 2004) as follows.

1) Diagnose the occurrence of cloud from qc, qi, qr,and qs. If qc + qi + qr + qs > 0.01 g kg-1 in a CRM grid cell, then this grid cell is regarded as cloudy (i.e., cloud fraction = 1), otherwise the grid cell is regarded as clear(i.e., cloud fraction = 0). This criterion was also used in Grabowski (1998).

Fig. 1. Comparison of total cloud fraction (Ctot) between (a) CloudSat observations and (b) the NICAM simulation during the 7-day period starting from 0000 UTC 25 December 2006.

2) Average the original CRM fields to the 2.8° × 2.8°grid division. The cloud fraction and the vertical velocity at 500 hPa (w500) are averaged within each GCM grid. These yield vertical distributions of cloud fractions and w500 for each GCM grid. In addition, the vertically projected cloud fraction (i.e., Ctot) for each GCM grid is derived by dividing the number of cloudy CRM columns by the total number of CRM columns within the grid.

3) Obtain Lcf. The vertical cloud fraction profile and Ctot in each GCM grid are supplied to the stochastic cloud generator with GenO incorporated to obtain Lcf. Lcf is defined as the value that gives the same Ctot as the original CRM cloud field when used in Eqs. (1) and (2). To demonstrate the effectiveness of using this procedure to capture the cloud overlap characteristics, a GCM grid with a typical cloud profile often seen in the tropical deep convective region is chosen as an example and the generated and original cloud structures are properties examined include the vertical cloud fraction profile, the downward cumulative cloud fraction,and the cloud fraction exposed to space at different heights (Fig. 3). It is suggested that, by applying the achieved Lcf in GenO, the generated cloud structures(dotted lines) resemble those of the original CRM field(solid lines). The characteristics of clouds shown in Fig. 3 are important to both solar reflectance and upward longwave emissivity. Therefore, the cloud structures generated by GenO with an accurate value of Lcf potentially facilitate the computation of radiation fields.

文章来源:《热带地理》 网址: http://www.rddlzz.cn/qikandaodu/2020/1224/453.html



上一篇:中国:我的梦·我的爱
下一篇:小学教育专业教育见习与实习课程建设与改革研

热带地理投稿 | 热带地理编辑部| 热带地理版面费 | 热带地理论文发表 | 热带地理最新目录
Copyright © 2018 《热带地理》杂志社 版权所有
投稿电话: 投稿邮箱: